

Smuff

Seamless blending of probabilistic nowcasts and NWP forecast

Christel Prudhomme, on behalf of the Smuff consortium

Christel.Prudhomme@ecmwf.int

Seamless probabilistic multi-source forecasting of heavy rainfall hazards for European flood awareness (SMUFF)

- Tools for assessing and forecasting the hazards and risks induced by intense rainfall and severe storms
- Project is funded by Union Civil Protection Mechanism
- Following a trilogy of successful projects HAREN, EDHIT and ERICHA
- Jan 2018- Dec 2019
- Coordinator: Finish Meteorological Institute
- Partners: University Polytechnics of Catalonia, ECMWF, Mikkelin Kaupunki
- Main aim: Rapidly updated, high resolution nowcasts of flash flood hazard within EFAS

Background – EFAS flash flood operational forecasting system

- **ERICHA** nowcasting 15' to 4 hours [EC Civil Protection Prevention project]
 - Uncorrected Opera radar European coverage
 - Updated every 15 mn up to
 - Total Precipitation + Flood risk area
 - Radar-based deterministic nowcast + flood risk coefficient
 - Thresholds based on MeteoAlert
- ERIC Flash flood indicator next 5 days [JRC]
 - Cosmo-leps European coverage
 - Updated twice daily up to 5 days, no details
 - Flood reporting points + affected areas
 - Probabilistic NWP (Cosmo-leps) + hydrological model + flood risk coefficient
 - Threshold based on reference climatology (model based)

EFAS Flash Flood forecasting Challenges & SMUFF solutions

- Limited European coverage -> exclusion of countries e.g. Italy
 - SMUFF: radar + satellite merging for extension of geographic coverage
- Precipitation composite from Opera -> systematic errors
 - SMUFF: gauge-corrected opera-based precipitation for improved ERICHA forecasts
- Deterministic nowcasting -> no uncertainty/ probability
 - SMUFF: ensemble nowcasting for probabilistic forecasts
- Two independent systems -> more complex decision making
 - SMUFF: blending of ensemble nowcast & ensemble NWP for seamless, consistent forecast up to 5 days

PERC - Pan-European Radar Composite

- Step 1: Composite consists data from
 - OPERA radar network
 - Clutter removal + Bias correction
 - EUMETSAT Convective Rainfall Rate (CRR)
 - Bias correction (different for night and day)
 - Rain fields based on GLD360 lightning density
 - Bias correction
- Step 2: Daily gauge-adjustment of OPERA composite

Park S, M. Berengeur, D. Sempere-Torres, 2019: Long-term analysis of gauge adjusted radar rainfa accumulations at European scale, Journal of Hydrology, under review.

Probabilistic radar-based rainfall nowcasts

- Radar-based nowcasting based motion field tracking & extrapolation
- Probabilistic nowcast for the evolution of the rainfall field
- Computationally very expensive
 - Updated every 1 hour.
 - Ensembles size: 20 members.

Seamless blending of NWP and nowcast

- Aims to create a seamless ensemble forecast up to 5 days leadtime
- ECMWF-IFS are produced twice daily at 00 and 12 UTC
 - Deterministic forecast @9 km with 10 days lead time, first 90 hours with 1 hour timesteps
 - Ensemble forecasts 50 + 1 members @18km, with 15 days lead time, first 90 hours with 1 hour timesteps
- SWIRLS nowcasting system of the Hong Kong Observatory (Wong et al. 2009)
 - Phase correction (Optical flow method)
 - Intensity calibration by adjusting distribution of accumulated rainfall
 - Merging the adjusted rainfall fields over an 8 hour time window

Blending ensemble precipitation nowcast & NWP forecast

Ensemble Nowcast

15mn precip total every 15mn up to 8 hrs

Ensemble NWP

Members searched for similarity in

ECMWF

- Precipitation location
- Intensity of 1hr rainfall

Weighing factor

Blended product

1hr precip total every 6hr up to 5 days

Seamless blending of NWP and nowcast

Blending of QPFs from 20-member SBMcast nowcast ensemble with the 50-member of ECMWF EPS is based on maximizing their similarities

Transforming Rainfall Nowcasts into Flash Flood Hazard Products

Limitations:

- Deterministic only
- Short lead time (4 hours)
- Real world thresholds difficult to exceed when using radar accumulations

Advantages:

- Probabilistic
- Warnings account for NWP bias

Limitations:

 No short range detail for first 4 hours

Transforming Rainfall Nowcasts into Flash Flood Hazard Products

- Combine ERICHA and EPIC methodologies
 - Input: Probabilistic information from the blended forecast
 - Output:Probabilistic flash flood hazard nowcasts
 - Extended lead time up to 5 days (whilst preserving detail in first 4 hours)
 - Warnings not affected by bias

Probabilistic product:

 At each timestep show probability of exceeding mean annual maximum

Simplified Rapid Risk Forecasts

- Currently no way of knowing which locations will have the most impact
- Population density is a key driver
- > Intersect probabilistic flash flood hazard with population density

Conclusions and future aspects

- SMUFF develops tools for assessing and forecasting pan-European hazards induced by severe storms and flash floods
- The project focus on
 - probabilistic nowcasting of convective storms that cause hazards in urban areas
 - providing a continuous hazard forecasting horizon by seamlessly integrating the nowcasts of precipitation with the NWP outputs of ECMWF
 - developing tools to characterize the uncertainty affecting the different components of the hazard forecasting algorithms
- The SMUFF products will be integrated into new layers on the ERICHA/SMUFF platform and provided for EFAS
- Future plans are to improve the risk assessment and consider precipitation type in the precipitation forecasting.

Thank you

Operational challenges

Time step

15mns OK for nowcasting; not appropriate after 8 hours

Number of ensemble members

- 20 x 51 combinations too costly
- Sub-sampling of most common features -> 51 members up to 5 days

Spatial resolution

- 1km nowcast OK; 1km NWP not appropriate
- Change file formats / resolution too complex for downstream applications (e.g. flash flood transformation)

Code efficiency and archiving

15mn update -> volume too high for archiving

